
A COMMUNITY FORMAT FOR ELECTRO-OPTICAL SPACE SITUATIONAL

AWARENESS (EOSSA) DATA PRODUCTS

Tamara Payne, Shaylah Mutschler, Neal Shine
Applied Optimization

Daniel Meiser, Roberto Crespo
NASIC/GSMS

Elizabeth Beecher, Lawrence Schmitt
AFRL/RYWW

ABSTRACT

In this paper, we present a flexible format for compiling radiometry/photometry data with pertinent information about

the collections into a file for use by the Space Situational Awareness (SSA) community. With the increase in the

number of Electro-Optical (EO) sensors collecting photometric, radiometric, and spectroscopic data on man-made

Resident Space Objects (RSOs) for SSA purposes, the EO SSA community of interest and stakeholders in SSA require

a file format protocol for reporting the extracted information used for SSA from these datasets.

This EOSSA file format provides a foundation to enable data providers to format their processed data. The objective

of this format is to handle a variety of photometric measurements from multiple sensors and provide fields for specific

parameters containing crucial data about the object, the sensor, the collection, and the processing.

The chosen formatting type for EOSSA is the Flexible Image Transport System (FITS). It is maintained by the

International Astronomical Union and NASA/GSFC. FITS is the standard data format used in astronomy and has

extensions and features that make it easy to transport and archive large scientific data sets. There are types of FITS

files for multi-dimensional arrays, such as images, or hyperspectral image cubes, and headers and tables for data

extracted from the images, and descriptive information about the data and sensor. The FITS binary table extension is

the most efficient data structure to use for the purposes of SSA with respect to ease of programming, computational

speed, and storage space. A hierarchical data format (HDF5) has many of these features; however, its biggest drawback

to our purpose is that the files are large and require a lot of storage space. Secondly, no standardized HDF5 file

structure has been developed and there is no high level application programming interface (API).

1. INTRODUCTION

With the increase in the number of Electro-Optical (EO) sensors collecting photometric, radiometric, and

spectroscopic data on man-made Resident Space Objects (RSOs) for Space Situational Awareness (SSA) purposes,

the EO SSA community of interest and stakeholders in SSA require a file format protocol for reporting the extracted

information used for SSA from these datasets. We have developed a sensor-independent file format standard to meet

the community’s current and evolving needs to ingest these datasets and provide a common data format for analysis

tool developers. This file format for EO SSA data products is thusly named EOSSA.

There are various sensors producing photometric data products of various types from various missions. As such, a

format that is consistent, contains required information for pedigree, captures observing conditions, and yet is flexible

is required. Since EO observations vary both in size and type depending on the sensor and/or collection mode, a

standardized and extensible format must be able to handle the variability. The EOSSA format has been developed to

accommodate any of these varieties. With a standardized format that includes all the relevant information on RSO

collections, such as time, sensor location, target location, calibrations, etc., as well as the EO measurements

themselves, analysis tools can be more readily developed and tested for RSO characterization with reduced cost.

The file specification document for EOSSA provides a foundation to enable data providers to format their processed

data into the EOSSA format (Ref. 1). The objective of this format is to handle a variety of photometric measurements

from multiple sensors and provide fields for specific parameters containing crucial data about the object, the sensor,

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
A Community Format for Electro-optic Space Situational Awareness
(EOSSA) Data Products

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,AFRL/RYWW,Wright Patterson
AFB,OH,45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
In the Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference, 9-12 Sep 2014,
Maui, HI.

14. ABSTRACT
In this paper, we present a flexible format for compiling radiometry/photometry data with pertinent
information about the collections into a file for use by the Space Situational Awareness (SSA) community.
With the increase in the number of Electro-Optical (EO) sensors collecting photometric, radiometric, and
spectroscopic data on man-made Resident Space Objects (RSOs) for SSA purposes, the EO SSA
community of interest and stakeholders in SSA require a file format protocol for reporting the extracted
information used for SSA from these datasets. This EOSSA file format provides a foundation to enable
data providers to format their processed data. The objective of this format is to handle a variety of
photometric measurements from multiple sensors and provide fields for specific parameters containing
crucial data about the object, the sensor, the collection, and the processing. The chosen formatting type for
EOSSA is the Flexible Image Transport System (FITS). It is maintained by the International Astronomical
Union and NASA/GSFC. FITS is the standard data format used in astronomy and has extensions and
features that make it easy to transport and archive large scientific data sets. There are types of FITS files
for multi-dimensional arrays, such as images, or hyperspectral image cubes, and headers and tables for
data extracted from the images, and descriptive information about the data and sensor. The FITS binary
table extension is the most efficient data structure to use for the purposes of SSA with respect to ease of
programming, computational speed, and storage space. A hierarchical data format (HDF5) has many of
these features; however, its biggest drawback to our purpose is that the files are large and require a lot of
storage space. Secondly, no standardized HDF5 file structure has been developed and there is no high level
application programming interface (API).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

the collection, and the processing. These parameters are essential for applying the EO phenomenology to identify and

classify RSOs, detect and resolve anomalies, and detect and track RSO status changes.

The chosen format [Flexible Image Transport System (FITS)] is maintained by the International Astronomical Union

and NASA/GSFC (Ref. 2). FITS is an open standard data format used in astronomy and has extensions and features

that make it easy to transport and archive large scientific data sets. There are types of FITS files for multi-dimensional

arrays, such as images, or hyperspectral image cubes, and headers and tables for data extracted from the images, and

descriptive information about the data and sensor. The FITS binary table extension is the most efficient data structure

to use for our purposes, both with respect to ease of programming, computational speed, and storage space (Ref. 2).

From the FITS Support Office web site, the following quote describes the motivation behind the development of FITS.

“The Flexible Image Transport System (FITS) evolved out of the recognition that a standard format was needed for

transferring astronomical data from one installation to another. The original form, or Basic FITS, was designed for

the transfer of images and consisted of a binary array, usually multidimensional, preceded by an ASCII text header

with information describing the organization and contents of the array. The FITS concept was later expanded to

accommodate more complex data formats. A new format for image transfer, random groups, was defined in which the

data would consist of a series of arrays, with each array accompanied by a set of associated parameters.”1

FITS is organized in a series of blocks. A FITS block is a sequence of 2880 bytes aligned on 2880 byte boundaries in

the FITS file; blocks are most commonly either a header block or a data block. Each FITS structure consists of an

integral number of FITS blocks. A FITS file is composed of a primary Header and Data Unit (HDU), which is a

required feature of every FITS file. The primary HDU starts with the first FITS block of the FITS file. A FITS file

may also contain conforming extensions and other special records, both of which are optional (e.g., an EOSSA file

must contain a BINTABLE extension). A FITS file containing one or more extensions following the primary HDU is

sometimes referred to as a Multi-Extension FITS (MEF) file. The first FITS block of each subsequent FITS structure

shall be the FITS block immediately following the last FITS block of the preceding FITS structure. For example, in

an EOSSA file, the first FITS block of the BINTABLE extension FITS structure is the FITS block immediately

following the FITS block containing the primary HDU (Ref. 2). For longer descriptions and more details, see the FITS

Standard document and the User’s Guide.2

2. EOSSA FORMAT STRUCTURE

An EOSSA file contains two structures: a primary header and a binary table extension. Both of these structures contain

fields that are required by the FITS format as shown in Table 1 andTable 2, respectively; however, the binary table

extension contains additional fields that distinguish it from a more commonly known FITS image file.

Table 1. FITS Primary Header Keywords

Keyword Description Example

1 SIMPLE The value field shall contain a logical constant with

the value T if the file conforms to FITS standard.

This keyword is mandatory for the primary header

and must not appear in extension headers. A value F

signifies that the file does not conform to FITS

standard.

SIMPLE = T

2 BITPIX The value field shall contain an integer. The absolute

value is used in computing the sizes of data

structures. It shall specify the number of bits that

represent a data value in the associated data array.

For valid values of BITPIX see Ref. 1. Writers of

FITS arrays should select a BITPIX data type

BITPIX = 16

1 http://fits.gsfc.nasa.gov/fits_overview.html
2 http://fits.gsfc.nasa.gov/standard30/fits_standard30aa.pdf and http://fits.gsfc.nasa.gov/users_guide/usersguide.pdf

http://fits.gsfc.nasa.gov/fits_overview.html
http://fits.gsfc.nasa.gov/standard30/fits_standard30aa.pdf
http://fits.gsfc.nasa.gov/users_guide/usersguide.pdf

appropriate to the form, range of values, and

accuracy of the data in the array.

3 NAXIS The value field shall contain a non-negative integer

no greater than 999 representing the number of axes

in the associated data array. A value of zero signifies

that no data follow the header in the HDU.

NAXIS = 2

4 NAXISn, n =

1,…,NAXIS

The NAXISn keywords must be present for all

values n = 1,…, NAXIS, in incrementing order of n,

and for no other values of n. The value field of this

indexed keyword shall contain a non-negative

integer representing the number of elements along

axis n of a data array. A value of zero for any of the

NAXISn signifies that no data follow the header in

the HDU. If NAXIS is equal to 0, there shall not be

any NAXISn keywords.

NAXIS1 = 250

NAXIS2 = 300

 Custom Placeholder for other non-required fields within

FITS file format or fields that the data provider

might want to define. Such as those defined in order

to create an EOSSA FITS document.

DATE = ‘2006-10-22’

last END This keyword has no associated value. Bytes 9

through 80 shall be filled with ASCII spaces. The

END keyword marks the logical end of the header

and must occur in the last 2880-byte FITS block of

the header.

END

Table 2. FITS Binary Table Extension Header Keywords

Keyword Description Example

1 XTENSION The value field shall contain a character string

giving the name of the extension type. This

keyword is mandatory for an extension header

and must not appear in the primary header.

XTENSION=˽’BINTABLE’3

2 BITPIX (same description as Table 1) BITPIX = 8

3 NAXIS (same description as Table 1) NAXIS = 2

4 NAXISn, n = 1,…,

NAXIS

(same description as Table 1)

NAXIS1 is the number of bytes in each row

for a BINTABLE extension

NAXIS2 is the number of rows in data table

for a BINTABLE extension

NAXIS1 = 410

NAXIS2 = 10 (for a 10 row

table)

5 PCOUNT The value field shall contain an integer that

shall be used in any way appropriate to define

the data structure, consistent with Eq. 1. In

IMAGE extensions this keyword must have

the value 0; in BINTABLE extensions it is

used to specify the number of bytes that follow

the main data table in the supplemental data

area called the heap.

PCOUNT = 0

6 GCOUNT This keyword must have the value 1 in the

IMAGE and BINTABLE extensions.

GCOUNT = 1

3 The ˽ and single quotes do not need to be specified by the provider. This is done by the library that aids in writing

the FITS/EOSSA file. See the FITS Standard for more information on the XTENSION keyword and the formatting

shown (Ref. 1).

8 TFIELDS The value field shall contain a non-negative

integer representing the number of fields

(columns) in each row of the data table.

TFIELDS = 1

9 TFORMn The value field of this indexed keyword shall

contain a character string of the form rT.

It describes the value which will be in the nth

field/column of the data table. Reference

below for details.

TFORM1 = 27A

10 TTYPEn The value field of this indexed keyword shall

contain a character string giving the name of

field n.

TTYPE1 = UTC_Begin_Exp

11

TUNITn The value field shall contain a character string

describing the physical units in which the

quantity in field n is expressed.

TUNIT1 = char

 Custom Placeholder for other non-required fields

within FITS file format or fields that the data

provider might want to define. Such as those

defined in order to create an EOSSA FITS

document.

(EXTNAME, CLASSIF,

VERS,..etc.)

last END (same description as Table 1) END

The total number of bits in the extension data array (exclusive of fill that is needed after the data to complete the last

2880-byte data block) is given by the following expression:

𝑁𝑏𝑖𝑡𝑠 = |𝐵𝐼𝑇𝑃𝐼𝑋| × 𝐺𝐶𝑂𝑈𝑁𝑇 × (𝑃𝐶𝑂𝑈𝑁𝑇 + 𝑁𝐴𝑋𝐼𝑆1 × 𝑁𝐴𝑋𝐼𝑆2 × …× 𝑁𝐴𝑋𝐼𝑆𝑚),
Eq. 1

where Nbits must be non-negative and is the number of bits excluding fill; m is the value of NAXIS; and BITPIX,

GCOUNT, PCOUNT, and the NAXISn represent the values associated with those keywords. If Nbits>0, then the data

array shall be contained in an integral number of 2880-byte FITS data blocks. The header of the next FITS extension

in the file, if any, shall start with the first FITS block following the data block that contains the last bit of the current

extension data array (Ref. 1).

The binary table extension structure is composed of two parts: a header and a data unit (or table data). The binary table

extension header contains both FITS specific keywords and EOSSA specific keywords; the EOSSA specific keywords

are shown in Table 3. The EOSSA specific keywords within the binary table extension header are the metadata of the

data contained in the actual table of the binary table extension. The metadata in the header is used to describe the data

within the table in its entirety. For example, header keywords include the security classification of the table data

(CLASSIF), the telescope site name for which the data was collected from (TELESCOP), and the TLE of the target

object for which has been collected for (TLELN1 and TLELN2).

Table 3. EOSSA Binary Table Extension Header Required Keywords

Req’d. Keyword Description Units Format Example(s)

1 All EXTNAME Filename of the FITS binary

extension table file
 A

2 All CLASSIF Security classification level of the

data contained in the file
 A ‘UNCLASS’,

‘CONF’, ‘SECRET’,
etc.

3 All VERS Version number of the EOSSA data

format
 A '1.0', '2.5', ‘3.0’

4 All OBSEPH Observer type, i.e. ground-based,

space-based with a TLE for the

sensor, or space-based with a state

vector for the sensor

 A ‘GROUND’, ‘TLE’,
‘STATE’

5 All TELESCOP Telescope site name or SSN sensor

identifier.
 A ‘AMOS’, ‘RME’,

‘SENSOR510’

6 G TELLAT Geographical latitude of the telescope degrees N D

7 G TELLONG Geographical longitude of the

telescope
degrees E D

8 G TELALT Distance above sea level of the

telescope
m D

9 All OBSNAME Telescope name A ‘SENSOR510’,
‘AEOS’, ‘MT16’,
‘RMERaven’,etc.

10 All OBJEPH Target object ephemeris source A 'STATE', 'TLE'

11 All OBJTYPE If the target has a space catalog

number, the string ‘SCN’ is the

value. If another catalog is used to

identify the object, the name of that

catalog is the value. Otherwise

‘NULLSTRING’ is the value.

 A 'SCN',
‘NULLSTRING’

12 All OBJNUM If OBJTYPE = ‘NULLSTRING’,

-2147483648 is the value. Otherwise,

the identification number of the

object from the catalog in OBJTYPE

is the value.

 J 12345

13 All OBJECT Name of target object A ‘GALAXY14’

14 All TLELN1 Target Object Truncated TLE Line 1.

First line of TLE without preceding

'1' (67 characters). ‘NULLSTRING’

for UCTs.

 A

15 All TLELN2 Target Object Truncated TLE Line 2.

Second line of TLE without

preceding '2' (67 characters).

‘NULLSTRING’ for UCTs.

 A

The binary table extension data unit is comprised solely of EOSSA specific fields. These fields are defined below in

Table 4. This data unit can be thought of as a table comprised of rows and columns. Table 4 simply defines the columns

of the table, and the each row represents a single observation of the target object. Examples of columns of the data

table are start time of the exposure for that observation (UTC_Begin_Exp), the exposure time for that observation

(Exp_Duration), and the range normalized magnitude of the object for that observation (Mag_Range_Norm).

Table 4. EOSSA Binary Table Extension Data Column Descriptions

Req’d. TTYPEn values

(data columns)
Description Units Format

(part T of

TFORM)

Example(s)

1 All UTC_Begin_exp The start time of the

exposure in UTC
yyyy-mm-
ddThh:mm
:ss{.sssssss
}

A ‘2013-08-

01T12:13:14.000’

2 All UTC_End_exp The end time of the

exposure
yyyy-mm-
ddThh:mm
:ss{.sssssss
}

A ‘2013-08-

01T12:14:14.000’

3 All JD_Mid_Exp The time of mid-exposure

in JD. Be sure that the

values for this keyword

have enough significant

digits to express the time

to the appropriate fraction

of a second

 D 2456506.00937

4 All Exp_Duration Length of the integration

or exposure time
sec D 30.0

5 All Cur_Spec_Filt_Nu
m

The reference number, n,

in CALFILn for the

currently used spectral

filter

 J 1

6 All Cur_ND_Filt_Num The reference number n,

in NDFNAMn for the

currently used neutral

density filter

 J 2

7 All Mag_Exo_Atm Exo-atmospheric

magnitude is the

magnitude of the target on

the standard scale with

atmospheric effects

removed.

mag D 13.21

8 All Mag_Range_Norm Range-normalized

magnitude (Mag in #7)

using 1000 km

mag D 3.45

9 All Eph_RA_DE Predicted Right Ascension

and Declination of the

Target object from the

frame of reference of the

sensor (J2000, geocentric

velocity aberration). SGP4

and VCMs produce

geocentric origin and

velocity aberration and

subtracting the sensor

geocentric position of the

sensor places in its

reference frame.

deg 2D [75.33; -5.001]

10 All Met_RA_DE Measured Right

Ascension and Declination

of the Target object from

the frame of reference of

the sensor.

deg 2D [75.31; -5.201]

11 G Eph_AZ_EL Predicted Azimuth and

elevation angles of the

target object from a

ground-based sensor (no

atmospheric refraction

correction required).

AZ_EL implies apparent

deg 2D [92.89; 32.12]

topocentric place in true of

date reference frame as

seen from the observer

with aberration due to the

observer velocity and light

travel time applied.

12 G Met_AZ_EL Measured azimuth and

elevation angles of the

target object from a

ground-based sensor (no

atmospheric refraction

correction required)

deg 2D [92.91;32.76]

13 G Sun_AZ_EL Azimuth and elevation

angles of the sun from a

ground-based telescope

(no atmospheric refraction

correction required)

deg 2D [273.91; -25.77]

14 All Tel_Obj_Range Distance from the

telescope to the target

object during the

observation

m D 3.578683E7

3. BUILDING YOUR OWN EOSSA FILE

In this section, we discuss the process of building an EOSSA file from the sensor data. The details for assembling the

metadata of the collections and calculating the additional parameters to fully populate all the EOSSA fields are

described in Reference 1.

3.1 Data Collection Considerations and Image Data

The creation of an EOSSA file actually starts from the collection of images at the telescope; typically FITS is used to

capture the image and metadata pertinent to the collection, e.g. time, location, filter, exposure time, array size, etc.

Many of the fields in the original raw image FITS file should be captured by the image processing software for copying

into the EOSSA output file. Many sensors, however, use HDF5 format to capture images and store the metadata.

Again, many of the fields captured at the time of collection merely need to be read and stored by the image processing

software to be written into the EOSSA file. EOSSA is for assembling and storing the extracted

radiometric/photometric and astrometric information from the sensor data collection. Therefore, it contains the output

of the specific image processing/extraction software used to calibrate and process the sensor data.

3.2 Library Choices

There are several open-source FITS libraries available for various programming languages. Below is a brief and

compressed table showing some of the library options available for C, C++, Java, and MATLAB development. This

is not a comprehensive list; this table, in its entirety, and more information can be found on the FITS website4. Table

5 shows available tools that will allow the creation of FITS binary extension tables and thus, can be used to build

software to read and write EOSSA files.

Table 5. FITS Libraries available in certain Programming Languages for Writing EOSSA Files

Language and

Library Name

Read Write Other capabilities: R(read), W(write)

4 http://fits.gsfc.nasa.gov/fits_libraries.html

http://fits.gsfc.nasa.gov/fits_libraries.html

C++ & C;

CFITSIO

yes yes R&W Images, Groups, ASCII Table, and Var.

Len. Arrays

Java;

nom.tam.fits

yes yes R&W Images, Groups, ASCII Table, and Var.

Len. Arrays

MATLAB;

built-in

yes no R&W Images, only R ASCII and Binary Table

Python;

PYFITS

yes yes R&W Images, Groups, ASCII Table, and Var.

Len. Arrays

As shown above in the table, C++, C, Java, and Python all have extensive FITS libraries that allow the user to read

and write EOSSA files. However, MATLAB currently only has the capability to read an EOSSA file, not write one.

3.3 Putting It All Together

When implementing software to write an EOSSA file, there is a certain flow of thought and code organization that

one should follow in order to simplify the process. It is recommended that the data that is going to be written into an

EOSSA file be stored in an organized structure that emulates the structure of an EOSSA file. This structure should be

created in the language in which the image processing is executed so that the metadata and extracted radiometry can

be easily transferred into the structure. This structure should contain binary table header fields that are grouped

together and consist of only scalar variables. Similarly, the binary table data should be grouped together and consist

of only array or vector variables. It is not necessary to include the primary header and the FITS specific fields within

the structure because these fields are automatically calculated and populated by most FITS writer libraries. The FITS

library chosen is primarily dependent on the language that is performing the image processing and then reliant on

which of those libraries support writing a FITS binary table extension. A condensed list of libraries can be found in

Table 5; this list covers the major programming languages, which includes languages used for IRAF and Source

Extractor: Java, C, C++, Python, and MATLAB. There are FITS libraries available for other various programming

languages as well. After selecting a library, utilize this library in order to write your data structure to a FITS file. If all

the EOSSA required fields are within this FITS file, an EOSSA file has been successfully created.

4. SUMMARY

In this paper, we presented a flexible format, EOSSA, for compiling radiometry/photometry data with pertinent

information about the collections into a file for use by the Space Situational Awareness (SSA) community. This format

provides a foundation to enable data providers to format their processed data and provides a standard format for

analysis tools. The EOSSA format structure was presented and how to build an EOSSA file was discussed.

5. REFERENCES

1. Electro-Optical Space Situational Awareness (EOSSA) File Format Description Document, Version 3.1.1.

Release 2, July 2014

2. Pence , W.D., Chiappetti , L., Page, C. G., Shaw, R. A., Stoble, E., 2010, A&A, 524, A42

